Linking Infectious Diseases and the Changing Climate in the Northern/Arctic Region

Presenter: Yan Ma

Stockholm University

Coauthors: Georgia Destouni, Zahra Kalantari, Anna Omazic, Birgitta Evengård, Camilla Berggren, Tomas Thierfelder

How does climate change affect infectious diseases?

Art by Matteo Farinella https://thebulletin.org/2020/04/how-to-explain-climate-change-with-comic-books/

Temperature

Precipitation

River flow

Humidity

Picture by Jessica Regine Masanque https://www.pinterest.com/pin/593138213395099329/

Known:

Previous studies have reasoned about potential climate sensitive infections, such as borreliosis and tick-borne encephalitis (TBE), based on theoretical, laboratory, and mainly local disease incidence indications.

Unknown:

Whether are these sensitivity estimates supported by empirical data for climate and disease outbreaks on a large scale, such as over the Northern/Arctic Region?

Aim:

Linking climate and infectious disease trends in the Northern/Arctic Region for seven selected diseases

Data sources (open access):

Disease:

CLINF GIS PUBLIC DATA REPOSITORY

Climate:

High-resolution gridded datasets of the Climate Research Unit (CRU)

Seven selected diseases

Infection	Disease	Transmission pathways
Agent		
Bacteria	Borreliosis	By vector Ixodidae ticks.
	Tularemia	Multiple transmission modes: vector-borne
		(mosquitoes, horseflies, ticks); direct
		contact; oral; airborne; water-borne.
	Leptospirosis	Main hosts are rodent species in natural foci,
		and livestock and dogs in anthropurgic foci.
		Leptospira follow the fecal-oral transmission
		mechanism via water. Humans are usually
		infected during contact with water
		contaminated with animal waste.
	Q fever	The main reservoirs are farm animals and
		pets, and transmission to human is mainly
		through inhalation of contaminated aerosols.
Virus	Tick-borne	By vector <i>Ixodidae</i> ticks.
	encephalitis (TBE)	
	Puumala virus	By inhalation of infected rodent excreta.
	infection	
Parasite	Cryptosporidiosis	By ingestion of cryptosporidium oocysts.

Studied regions:

Monthly temperature and precipitation changes from 1995-2005 to 2005-2015:

represented by subtracting the average value of the former period from the average of the latter.

Temperature

Precipitation

Trends of incidence for each region

Correlations found through stepwise regression (p<0.01)

Conclusion and Discussion:

- ☐ Significant relationships of borreliosis, leptospirosis, tick-borne encephalitis (TBE), Puumala virus infection, cryptosporidiosis, and Q fever with climate variables related to temperature and freshwater conditions.
- ☐ These data-driven results are consistent with previous reasoning-based propositions of climate-sensitive infections as increasing threats for humans, with notable exceptions for TBE and leptospirosis
- Statistical correlations do not reveal the mechanistic causal relationships that underlie the statistical correlations, and thus need to be interpreted with caution.

References

• Ma, Y., Destouni, G., Kalantari, Z., Omazic, A., Evengård, B., Berggren, C. and Thierfelder, T., 2021. Linking climate and infectious disease trends in the Northern/Arctic Region. Scientific reports, 11(1), pp.1-9.

